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The one-dimensional Burgers equation in the inviscid limit with white noise initial
condition is revisited. The one- and two-point distributions of the Burgers field as
well as the related distributions of shocks are obtained in closed analytical forms.
In particular, the large distance behaviour of spatial correlations of the field is
determined. Since higher-order distributions factorize in terms of the one- and two-
point functions, our analysis provides an explicit and complete statistical description
of this problem.

1. Introduction
The Burgers equation for the velocity field u(x, t),

∂

∂t
u(x, t) + u(x, t)

∂

∂x
u(x, t) = ν

∂2

∂x2
u(x, t), (1)

has raised much interest because of its multiple connections to a variety of physical
and mathematical problems. Background and references can be found for instance in
Gurbatov, Malakhov & Saichev (1991) and Woyczyński (1998). We cannot do justice
here to the very large literature on the subject and all the physical applications,
but just recall some aspects. On one hand, equation (1) is a version of the one-
dimensional Navier–Stokes equation without pressure and external forces. Although
it can be solved with the Hopf–Cole transformation (to be recalled below), the
determination of the statistics of the velocity field and of its large time asymptotics
leads to non-trivial problems when the initial data are chosen randomly. It provides
an oversimplified, but analytically tractable model of decaying turbulence (Burgers
turbulence) which has been much studied in the last decade. On the other hand, the
Burgers equation (1) is relevant to the propagation of nonlinear acoustic waves in
non-dispersive media. In this interpretation, the role of time and space are inverted;
initial velocity field in the case of turbulence becomes a time-dependent source term
at a point in space. When the source is random, the statistics of the propagating
signal away from the source are of interest (see in particular chap. 13 in Hamilton
& Blastock 1998). Let us also mention that the two- and three-dimensional Burgers
equations occur in connection with the study of surface growth via the deposition
process (it is called the Kardar, Parisi and Zhang (KPZ) equation (Kardar, Parisi
& Zhang 1986) in this context and u(x, t) = ∇h(x, t) with h the profile height of the
surface), as well as being a model for investigating the large-scale structure of the
universe (the Zeldovich adhesion approximation (Shandarin & Zeldovich 1989)).

In this work, we come back to the original Burgers problem (Burgers 1974) which
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concerned the statistics of the velocity field u(x, t) and of shock-waves in the inviscid
limit ν → 0 when the distribution of the initial velocity field u(x, 0) is a δ-correlated
Gaussian (white noise). The choice of white noise, although very singular, is natural in
the sense that it corresponds to the assumption of maximal randomness and absence
of correlations in the velocity field at a given time (or to a source with flat power
spectrum in the acoustic case), the problem being then to understand the nature of
the correlations induced by the nonlinearity of the Burgers equation in the course
of the time (or away from the source). In Burgers (1974), a considerable amount
of work was carried out to calculate various moments of these distributions, but
the distribution of the field p1(x, u, t) = Prob{u(x, t) = u} itself was not obtained in
closed form owing to the complexity of the analysis. The question has been addressed
again by Tatsumi & Kida (1972) and Kida (1979). In Tatsumi & Kida (1972), kinetic
equations for the dynamics of shocks are used to derive scaling properties, and in the
second part of Kida (1979), the result of numerical simulations for the distribution
of the strength and the velocity of shocks are presented. Recently, Avellaneda and E
(1995) and Avellaneda (1995) have derived rigorous upper and lower bounds of the
cubic type exp (−C|u|3t) for the tails of the distributions. Such cubic bounds have also
been obtained in Martin & Piasecki (1994) for the distribution of mass in the closely
related problem of ballistic aggregation. In Ryan (1998a), p1(u, t) is expressed in terms
of a certain function satisfying partial differential equations, and more refined bounds
are given for the large field asymptotics. For a short review, see Bertoin (2000).

In this paper we provide closed analytical forms of the statistical distributions for
the field and the associated distribution of shock-waves. One of our main contributions
is a simple formula expressing the shock strength distribution ρ1(µ, t) in terms of Airy
functions Ai(w) (equations (75), (76) and (55))

ρ1(µ, t) = t−4/3ρ1(µt
−2/3), ρ1(µ) = 2a3µI(µ)H(µ)

with

I(µ) =
∑
k> 1

e−aωkµ, H(µ) =
1

2iπ

∫ i∞

−i∞
dw

e−aµw

Ai2(w)
(2)

where −ωk (ωk > 0) are the zeros of the Airy function, and a is related to the intensity
of the initial white noise. The corresponding asymptotic behaviour for large µ reads
(equation (78))

ρ1(µ) = 2
√
πa9/2µ5/2 exp

(
−a

3µ3

12
− ω1aµ

)
, µ→∞. (3)

This non-Gaussian behaviour is of course compatible with the bounds found in the
above-mentioned works and is illustrated in figure 4. Similar formulae are obtained
for the distribution p1(u, t) of the Burgers field itself and a detailed study of the
clustering behaviour of the two-point distribution is presented (§ 5). At any positive
time, the initially uncorrelated white-noise field acquires correlations over the whole
space, but these correlations are strongly suppressed at large distance by a factor
exp (−a3x3/12t2), x → ∞. Moreover it turns out that the higher-order distributions
obey a factorization property in terms of the one- and two-point functions (§ 6).
Hence, our results give in fact a complete solution to the Burgers problem with initial
white noise distributed data.

Our analysis closely follows the spirit and the methods of Burgers (1974). In § 2,
we recall the Hopf–Cole transformation together with well-known facts about the
Burgers equation in the inviscid limit, with the purpose of introducing the notation
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and the definition of the one- and two-point distribution functions. In § 3, using the
notion of first hitting time, these distributions are expressed in terms of the basic
propagator for Brownian motion constrained by parabolic barriers. This propagator
can be explicitly constructed by solving the Airy eigenvalue problem. It appears then
that all statistical properties of the Burgers problem are embodied in the knowledge
of three functions called here I, J and H . The functions I and J are calculated in
§ 4 and the one-point distributions of fields and shocks are discussed. These results
have already been announced in Frachebourg (1999) in the equivalent language of
ballistic aggregation. Section 5 is devoted to the study of the large distance behaviour
of the two-point distribution (the function H). Since the analysis is somewhat heavy,
technical parts have been relegated to appendices. Finally, the factorization of higher-
order distributions is demonstrated in § 6.

One key new ingredient in comparison to Burgers’ analysis appears in § 4 in
the calculation of the function J (the function I appears in Burgers (1974)). The
use of contour integral representation of this function leads to considerable sim-
plifications when a number of remarkable identities between Airy functions are
introduced (see e.g. equation (65)). Also the study of the function H , which is needed
to determine the long distance behaviour correlations, cannot be found in Burgers’
book. The expressions in (2) as well as the function H (89) apparently cannot be
made more explicit, but allow for extracting numerical values and exact asymptotic
properties.

The situation considered in this paper is particularly relevant to the non-equilibrium
statistical model of ballistic aggregation: it is known (Burgers 1974; Kida 1979) that
the dynamics of shocks in Burgers’ turbulence is closely related to the dynamics of
the aggregating particles. White noise initial distribution of the Burgers velocity field
corresponds to Maxwellian initial velocity distribution of the particle undergoing
aggregation. Hence, our results also solve this statistical mechanical model. A precise
connection between the two problems can only be made in a proper scaling limit
since ballistic aggregation always retains the discrete nature of particles whereas the
Burgers velocity field describes a continuous medium. This connection is discussed in
a companion paper (Frachebourg, Martin & Piasecki 2000) where it is also shown
that our solution verifies the hierarchy of kinetic equations that govern the dynamics
of the aggregation process.

Comparison with decaying Burgers turbulence arising from other classes of stochas-
tic initial data will be given in the conclusion. The forced Burgers equation under the
action of external random forces (see Polyakov 1995; Yakhot & Chechlov 1996; E et
al. 1997) is not discussed in this paper.

2. General setting
For convenience, we briefly recall the construction of solutions of the Burgers

equation in the inviscid limit (see Burgers 1974; Woyczyński 1998 and references
therein). Introducing the potential ∂Ψ (x, t)/∂x = u(x, t) together with the Hopf–Cole
transformation

Ψ (x, t) = −2ν ln θ(x, t), (4)

it is found that the function θ(x, t) satisfies the linear diffusion equation

∂

∂t
θ(x, t) = ν

∂2

∂x2
θ(x, t). (5)



326 L. Frachebourg and Ph. A. Martin

It can be readily solved, leading to the explicit solution

u(x, t) =

∫ ∞
−∞

dy
x− y
t

exp

(
− 1

2ν
F(x, y, t)

)
∫ ∞
−∞

dy exp

(
− 1

2ν
F(x, y, t)

) (6)

where

F(x, y, t) =
(x− y)2

2t
− ψ(y), (7)

with

ψ(y) = −Ψ (y, 0) = −
∫ y

0

dy′ u(y′, 0), (8)

which depends upon the initial condition. Burgers turbulence corresponds here to the
situation where the initial velocity field u(x, 0) is a white-noise process in space (〈u(x, 0)
u(y, 0)〉 = (D/2)δ(x− y)), or equivalently ψ(y) is a two-sided Brownian motion with
diffusion coefficient D/2 pinned at ψ(0) = 0.

In the inviscid limit ν → 0, the only contributions of the integrals in equation (6)
come from the minima of the function F(x, y, t), which depend on the initial condition
through ψ(y),

ξ(x, t) = min
y
F(x, y, t), (9)

and we obtain

u(x, t) =
x− ξ(x, t)

t
. (10)

Owing to the scaling properties of the solution u(x, t), it is trivial to take into
account the time dependence of the problem. Indeed, the scaled Brownian motion
tα/2ψ(yt−α) is equivalent in probability to ψ(y), so that, from (9) and (10) with α = 2/3,
t2/3ξ

(
x/t2/3, 1

)
, is equivalent to ξ(x, t) and t−1/3u

(
x/t2/3, 1

)
is equivalent to u(x, t). We

study from now on the fixed time t = 1 solution u(x, 1) ≡ u(x). It will then always be
possible to recover the time-dependent solution through this scaling property as we
shall see in the concluding section.

The minimum ξ(x) ≡ ξ(x, 1) as a function of x can be found with the help of a nice
geometrical interpretation of the solution. Consider a realization of the Brownian
motion ψ(y) and a parabola centred at x of equation (x − y)2/2 + C (see figure
1) and adjust the constant C in order for the parabola to touch ψ(y) without ever
crossing it. The coordinate of the contact point is the minimum ξ(x) leading thus to
u(x) = x−ξ(x). Then, glide the parabola on the graph of ψ(y) by a continuous change
of its centre x and C until it touches it for x = xi on two contact points ξi and ξi+1.
Thus, at x = xi, the function F(x, y, 1) has two minima leading to a discontinuity of
u(x), called a shock, where limε→0 u(xi−ε) = xi−ξi and limε→0 u(xi+ε) = xi−ξi+1. To
make u(x) single valued at a shock, we define it to be continuous from the left-hand
setting u(xi) = xi − ξi.

A shock is characterized (see figure 1) by its location xi and two parameters which
can be taken as

µi = ξi+1 − ξi ‘strength’, νi = xi − ξi ‘wavelength’. (11)

(At time t, the strength is usually defined as the discontinuity µi/t = (ξi+1 − ξi)/t of
u(x, t) at a shock.)
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Figure 1. Geometrical interpretation of the solution u(x) = x− ξ(x) for a given realization of the
Brownian motion ψ(y) which stays below a parabola of equation s(y) = (y− xi)2/2 +C but on two
contact points ψ(ξi) = (ξi − xi)2/2 + C and ψ(ξi+1) = (ξi+1 − xi)2/2 + C . A shock is located at xi
with strength µi = ξi+1 − ξi and wavelength νi = xi − ξi while ηi = µ2

i /2− µiνi.

Instead of νi it will also be convenient to use the parameter ηi

ηi =
µ2
i

2
− µiνi, νi =

µi

2
− ηi

µi
. (12)

The quantities of interest to be computed are on one hand the joint distribution
densities pn(x1, u1; x2, u2; . . . ; xn, un) for the Burgers velocity field to have values be-
tween u1 and u1+du1, . . . , un and un+dun at points x1, . . . , xn, when the average is taken
over the realizations of the initial condition u(x, 0). On the other hand, we will also
consider the joint distribution densities of shocks ρn(x1, µ1, η1; x2, µ2, η2; . . . ; xn, µn, ηn).
We shall obtain the joint distribution for the Burgers velocity field u(x) from that
of the variable x − ξ(x). At time t = 1, these two sets of variables coincide and we
identify both distributions.

Consider first the one-point distribution density p1(x, u) where u(x) = x− ξ(x) = u.
Because of translation invariance, p1(x, u) = p1(0, u) ≡ p1(u) and u(0) = −ξ(0) = u.
Hence, p1(u) is the measure of the set of all Brownian paths ψ(y) with ψ(0) = 0 that
have their first contact (f.c.) (consideration of the first contact (or hitting) point is
consistent with the left continuity of u(x). If there is a shock at xi, u(xi)− limε→0 u(xi+
ε) = ξi+1− ξi > 0, implying that ξi has to be the first contact with the parabola.) with
a parabola y2/2 + C at ξ(0) = −u. As the origin of coordinates can be set to be at
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Figure 2. Brownian interpretation of the two-point distribution of the velocity field
p2(x, u1, u2). The Brownian paths stays under the parabolas s(1)(y) = y2/2 − u1y and
s(2)(y) = (y−x−u1)2/2−u2

2/2 +q but on two contact points ψ(0) = 0 and ψ(x+u1−u2) = q where
−(x+ u1 − u2)(x+ u1 + u2)/26 q6 (x+ u1 − u2)(x− u1 − u2)/2.

this contact point, it is given by the measure

p1(u) = E{ψ(y)6 su(y), y ∈ R; f .c. with su(y) at (0, 0)} (13)

of the set of paths that stay below the parabola

su(y) =
y2

2
− uy (14)

and have their first contact with it at ψ(0) = 0. By first contact in (13), we mean that
the path is strictly below the parabola ψ(y) < su(y) for y < 0, is assigned to pass at
ψ(0) = 0 and is then such that ψ(y)6 su(y) for y> 0. The expectation E{· · ·} refers
to Brownian paths running in the infinite ‘time’ interval −∞ < y < ∞.

Likewise, the two-point joint density distribution p2(0, u1; x, u2) ≡ p2(x, u1, u2) is the
measure of the set of paths with ψ(0) = 0 that have a first contact with a parabola
y2/2 + C1 (centred at the origin) at ξ(0) = −u1 and a first contact with a second
parabola (y−x)2/2 +C2 (centred at x) at ξ(x) = x− u2. Once again, we fix the origin
at the contact point with the first parabola. Thus, p2(x, u1, u2) is the measure of the
set of paths which stay below both the parabolas s(1)(y) = su1

(y) centred at u1 and
a second parabola s(2)(y) centred at x + u1 of equation (y − x − u1)

2/2 + C , while
the paths have a first contact point ψ(0) = 0 with s(1)(y) and a first contact point
ψ(x+ u1 − u2) = q with s(2)(y), where x > 0, x+ u1 − u2 > 0 (see figure 2). (The case
x + u1 − u2 = 0, i.e. when the two contact points coincide, is discussed in the next
section.) In terms of this parameter q the equation of the second parabola is

s(2)(y) =
(y − x− u1)

2

2
− u2

2

2
+ q (15)

Now, q is arbitrary except for the constraints that the first contact point with s(1)(y)
must be below the second parabola, namely s(2)(0)> 0, and that the first contact point
with s(2)(y) must be below the first parabola, namely s(1)(x + u1 − u2)> q. This leads
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to the condition −q16 q6 q2 with

q1 = q1(x, u1, u2) = 1
2
(x+ u1 − u2)(x+ u1 + u2),

q2 = q2(x, u1, u2) = 1
2
(x+ u1 − u2)(x− u1 − u2).

}
(16)

Hence,

p2(x, u1, u2) = E
{
ψ(y)6 s(1)(y), ψ(y)6 s(2)(y), y ∈ R;

f .c. with s(1)(y) at (0, 0), f .c. with s(2)(y) at (x+ u1 − u2, q), −q16 q6 q2

}
. (17)

The distributions p1(u1) and p2(x, u1, u2) have the normalizations∫ ∞
−∞

du1 p1(u1) = 1 (18)

and ∫ ∞
−∞

du2 p2(x, u1, u2) = p1(u1), lim
x→0

p2(x, u1, u2) = δ(u1 − u2) (19)

The distribution of shocks are defined in the same manner. By translation invariance
ρ1(x, µ, η) = ρ1(0, µ, η) ≡ ρ1(µ, η) is independent of x. It is given by the measure of the
set of paths that have two contacts with the parabola sν(y) = y2/2 − νy (recall that
ν = µ

2
− η

µ
), a first contact at ψ(0) = 0 and a last contact (l.c.) at ψ(µ) = η (if a path

has more than two contacts with the parabola, the shock parameters are obtained in
terms of the coordinates of the first and the last contacts) (see figure 1),

ρ1(µ, η) = E {ψ(y)6 sν(y), y ∈ R; f .c. with sν(y) at (0, 0); l.c. with sν(y) at (µ, η)} .
(20)

The joint distribution ρ2(0, µ1, η1; x, µ2, η2) of two shocks at distance x is the set of
paths that have two contacts with the parabola sν1

(y) as above and two contacts with
another parabola whose characteristics will be given in the next section. Notice that
the centres of the two parabolas are separated by a distance x.

All quantities will be eventually expressed in terms of the transition probabil-
ity kernel for Brownian motion in the presence of parabolic absorbing barriers
(Salminen 1988; Groeneboom 1989). Consider the conditional probability density
Kν(µ1, η1, µ2, η2) for the Brownian motion ψ(y), starting from ψ(µ1) = η1, to end at
ψ(µ2) = η2 while staying under the barrier ψ(y) < sν(y) = y2/2− νy for µ16 y6 µ2

Kν(µ1, η1, µ2, η2) = Eµ1 ,η1
{ψ(y) < sν(y), µ16 y6 µ2; ψ(µ2) = η2} . (21)

It thus satisfies the diffusion equation

∂µ2
Kν(µ1, η1, µ2, η2) =

D

2
∂2
η2
Kν(µ1, η1, µ2, η2), (22)

with Kν(µ, η1, µ, η2) = δ(η1 − η2) and Kν(µ1, su(µ1), µ2, η2) = Kν(µ1, η1, µ2, su(µ2)) = 0.
To solve this equation, it is convenient to consider the shifted stochastic process
φ(y) = ψ(y)− sν(y) which is a Brownian motion with a parabolic drift. Clearly,

Kν(µ1, η1, µ2, η2) = K(µ1, η1 − sν(µ1), µ2, η2 − sν(µ2)) (23)

where K satisfies the diffusion equation with drift

∂µ2
K(µ1, φ1, µ2, φ2) = s′ν(µ2)∂φ2

K(µ1, φ1, µ2, φ2) +
D

2
∂2
φ2
K(µ1, φ1, µ2, φ2) (24)

with K(µ, φ1, µ, φ2) = δ(φ1 −φ2) and Dirichlet boundary conditions K(µ1, 0, µ2, φ2) =
K(µ1, φ1, µ2, 0) = 0. Equation (24) can be reduced to a diffusion equation with linear
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potential by the transformation

G(µ1, φ1, µ2, φ2) = K(µ1, φ1, µ2, φ2) exp

[
− 1

D

(
φ1s

′
ν(µ1)− φ2s

′
ν(µ2)− 1

2

∫ µ2

µ1

dµ(s′ν(µ))2

)]
.

(25)

Then the propagator G is the solution of the equation(
∂

∂µ2

− D

2

∂2

∂φ2
2

− 1

D
φ2s

′′
ν (µ2)

)
G(µ1, φ1, µ2, φ2) = 0 (φ1, φ26 0), (26)

with G(µ, φ1, µ, φ2) = δ(φ1 − φ2) and Dirichlet boundary conditions at the origin,
G(µ1, 0, µ2, φ2) = G(µ1, φ1, µ2, 0) = 0. Since s′′ν (µ) = 1, this equation can be solved with
the help of the spectral decomposition of the operator − 1

2
D(∂2/∂φ2

2)−(1/D)φ2 leading
to (Burgers 1974; Salminen 1988; Groeneboom 1989)

G(µ1, φ1, µ2, φ2) =(
2

D2

)1/3∑
k> 1

e−ωk(µ2−µ1)/(2D)1/3 Ai(−(2/D2)1/3φ1 − ωk)Ai(−(2/D2)1/3φ2 − ωk)
(Ai′(−ωk))2

. (27)

The Airy function Ai(w) (Abramowitz & Stegun 1970), solution of

f′′(w)− wf(w) = 0, (28)

is analytic in the complex w-plane, and has an infinite countable numbers of zeros
−ωk on the negative real axis, 0 < ω1 < ω2 < · · ·.

Finally, coming back to Kν with the help of (23) and (25) and introducing the
explicit form (14) of sν(y) leads to

Kν(µ1, η1, µ2, η2) = G(µ1, φ(µ1)), µ2, φ(µ2))

× exp

[
1

D

(
φ(µ1)(µ1 − ν)− φ(µ2)(µ2 − ν) +

(µ1 − ν)3

6
− (µ2 − ν)3

6

)]
(29)

with φ(µ1) = η1 − sν(µ1), φ(µ2) = η2 − sν(µ2). Note the symmetry Kν(µ1, η1, µ2, η2) =
K−ν(−µ2, η2,−µ1, η1).

3. Distributions and transition kernel
In this section we relate the distribution functions to the transition kernel

Kν(µ1, η1, µ2, η2). We first treat the case of a single first contact point by comput-
ing the (conditional) probability density

Eµ1 ,η1
{ψ(y)6 sν(y), µ16 y6 µ2; f .c. with sν(y) at (µ, sν(µ)); ψ(µ2) = η2} (30)

that a Brownian motion starting at point (µ1, η1) ends at (µ2, η2) while staying below
the parabola sν(y), and has a first contact point ψ(µ) = sν(µ) at ‘time’ µ, with
µ1 < µ < µ2 and η1 < sν(µ1) and η2 < sν(µ2). This enables us to write the probability
p1(u) (equation (13)), where the expectation is taken on paths that run in the whole
‘time’ interval y ∈ R, as

p1(u) = lim
µ1→−∞

lim
µ2→∞

∫ su(µ1)

−∞
dη1

∫ su(µ2)

−∞
dη2

Eµ1 ,η1
{ψ(y)6 su(y), µ16 y6 µ2; f .c. with su(y) at (0, 0); ψ(µ2) = η2}. (31)
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As in the preceding section, it is convenient to consider

Eµ1 ,φ1
{φ(y)6 0, µ16 y6 µ2, f .c. with the origin at (µ, 0); φ(µ2) = φ2}

= −∂µPµ1 ,φ1;µ2 ,φ2
(µ) (32)

the quantity corresponding to (30) for the shifted process φ(y) = ψ(y) − sν(y). It
is the (conditional) probability that a drifted Brownian motion φ(µ), starting at
point (µ1, φ1), ends at (µ2, φ2), stays negative φ(y)6 0 and has a first contact with
the origin at ‘time’ µ (φ(µ) = 0). The desired quantity (30) is obtained by setting
φ1 = φ(µ1) = η1 − sν(µ1), φ2 = φ(µ2) = η2 − sν(µ2) in (32). We have also written that
(32) is the density of the probability Pµ1 ,φ1;µ2 ,φ2

(µ) that, under the same constraints,
the path has its first contact with the origin at some ‘time’ larger or equal to µ. This
probability is given by (for basic notions on first hitting time see Feller 1971)

Pµ1 ,φ1;µ2 ,φ2
(µ) =

∫ 0

−∞
dφK(µ1, φ1, µ, φ)

[−∂φK(µ, φ, µ2, φ2)− ∂φ2
K(µ, φ, µ2, φ2)

]
. (33)

Indeed one considers the paths starting from (µ1, φ1) that stay negative up to (µ, φ)
and then vanish at some ‘time’ larger or equal to µ. The probability density for
the later part is given by the measure of paths staying below the displaced barrier
φ(y) < ε diminished by that of paths staying below the origin φ(y) < 0 as ε → 0,
namely by

lim
ε→0

1

ε
(K(µ, φ+ ε, µ2, φ2 + ε)−K(µ, φ, µ2, φ2)). (34)

This leads to (33). Introducing (33) into (32) and using the forward diffusion equation
(24) as well as its backward equivalent, we find after several integrations by parts that

Eµ1 ,φ1
{φ(y)6 0, µ16 y6 µ2; f .c. with the origin at (µ, 0); φ(µ2) = φ2}

= 1
2
D∂φK(µ1, φ1, µ, φ)∂φK(µ, φ, µ2, φ2)

∣∣
φ=0

. (35)

Coming back to the original variables, our probability (30) reads

Eµ1 ,η1
{ψ(y)6 sν(y), µ16 y 6 µ2; f .c. with sν(y) at (µ, sν(µ)); ψ(µ2) = η2}

= 1
2
D∂ηKν(µ1, η1, µ, η)∂ηKν(µ, η, µ2, η2)

∣∣
η=sν (µ)

, (36)

with Kν given by equation (29).
Let us define the function J(ν) to be

J(ν) = −
√

1
2
D lim

µ2→∞

∫ sν (µ2)

−∞
dη2∂ηKν(0, η, µ2, η2)

∣∣∣∣
η=0

. (37)

Then, from (36) and (31) it is straightforward to find the expression of the one-point
distribution of the velocity field

p1(u) = J(−u)J(u) (38)

where we used the fact that Kν(µ1, η1, 0, η) = K−ν(0, η,−µ1, η1).
We come now to the two-point function (17) which involves a first contact at

y = 0 with the parabola s(1)(y) and a first contact at y = x+ u1 − u2 with the second
parabola s(2)(y). We consider first the situation where these two contact points are
distinct, i.e. when the strict inequality x + u1 − u2 > 0 holds. Since u(x) has slope
equal to one except at the location of shocks, this corresponds to velocity fields with
u(0) = u1, u(x) = u2 that have at least one shock in the interval [0, x).

When x + u1 − u2 > 0, each contact gives rise to an expression of the form
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(36) with appropriate parameters (see figure 2). The first contact with the parabola
s(1)(y) = su1

(y) is as before. After the ‘time’ µ∗ (coordinate of the parabolas intersection
s(1)(µ∗) = s(2)(µ∗)), the paths are found under the second parabola s(2)(y) (15) with
corresponding propagator Ks(2) (µ1, η1, µ2, η2) and first contact at (x + u1 − u2, q). The
corresponding probability is given by the following arrangement

1
2
D∂ηKu1

(µ1, η1, 0, η)∂ηKu1
(0, η, µ∗, η′)

∣∣
η=0

× 1
2
D∂ηKs(2) (µ∗, η′, x+ u1 − u2, η)∂ηKs(2) (x+ u1 − u2, η, µ2, η2)

∣∣
η=q

(39)

which has to be integrated on η1, η2, η
′ and q in the appropriate ranges and taken in

the limits µ1 → −∞, µ2 → ∞. The propagator associated with the second parabola
can be written in a coordinate system where the second contact point is again located
at the origin, namely

Ks(2) (µ1, η1, µ2, η2) = Ku2
(µ1 − x− u1 + u2, η1 − q, µ2 − x− u1 + u2, η2 − q). (40)

Finally, it is found that

p2(u1, u2, x) = J(−u1)H(x, u1, u2)J(u2) (x+ u1 − u2 > 0), (41)

where the function H(x, ν1, ν2) is defined as

H(x, ν1, ν2) =

1
2
D

∫ q2

−q1

dq

∫ η∗

−∞
dη′ ∂ηKν1

(0, η, µ∗, η′)

∣∣∣∣∣
η=0

∂ηKν2
(µ∗ − x− ν1 + ν2, η

′ − q, 0, η)

∣∣∣∣∣
η=0

.

(42)

The integration limits q1 = q1(x, ν1, ν2) and q2 = q2(x, ν1, ν2) are given by (16).
The intersection point between the two parabolas has coordinate (µ∗, η∗) =
((q + q1)/x, µ

∗2/2− ν1µ
∗).

We now determine the contribution to p2(x, u1, u2) of the set of velocity fields
u(x) that have no shocks in [0, x) (i.e. when x + u1 − u2 = 0) with the help of the
normalization (19). The set of Burgers fields with u(0) = u1 can be divided into the
union of two disjoint sets, those having at least one shock in [0, x) and those having
no shocks in [0, x). As seen before, the first set corresponds to Brownian paths having
two distinct contact points and from the previous discussion its measure is given by∫ u1+x

−∞ du2J(−u1)H(x, u1, u2)J(u2). The second set corresponds to the case x+u1−u2 = 0
when Brownian paths have a first contact point ψ(0) = 0 at the intersection of the
two parabolas su1

(y) and su1+x(y) with measure

E{ψ(y)6 su1
(y), y < 0; ψ(y)6 su1+x(y), y> 0; f .c. with su1

(y) at (0, 0)}
= J(−u1)J(u1 + x). (43)

The result (43) is derived by a slight extension of the calculation that led to (38). The
measures of these two sets sum up to p1(u1)

J(−u1)J(u1 + x) +

∫ u1+x

−∞
du2J(−u1)H(x, u1, u2)J(u2) = p1(u1). (44)

Hence, we conclude from (19) that the complete form of p2(x, u1, u2) is

p2(x, u1, u2) = J(−u1) [δ(x+ u1 − u2) + θ(x+ u1 − u2)H(x, u1, u2)] J(u2). (45)

A quantity of interest is the probability density p[0,x)(u1) for the Burgers field to take
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the value u1 at x = 0 while there is no shock in the interval [0, x), i.e. u(x) = u1 + x.
This is precisely the quantity (43), namely integrating (45) on u2 with H omitted

p[0,x)(u1) = J(−u1)J(u1 + x) (46)

and thus

p[0,x) =

∫ ∞
−∞

du1J(−u1)J(u1 + x) (47)

is the distribution of intervals of length x without shocks.
We turn now to the shocks distribution functions. According to the discussion of

the previous section on equation (20), we use equation (36) to write the one-shock
distribution function considered as a function of the parameters µ, η (see figure 1)

ρ1(µ, η) = J(−ν)I(µ, η)J(−µ+ ν) = J

(
−µ

2
+
η

µ

)
I(µ, η)J

(
−µ

2
− η

µ

)
, (48)

where the function I(µ, η) is defined as

I(µ, η) = 1
2
D∂η1

∂η2
Kν(0, η1, µ, η2)

∣∣
η1=0,η2=η

. (49)

The two-shocks distribution ρ2(0, µ1, η1; x, µ2, η2) ≡ ρ2(x; µ1, η1; µ2, η2) (considered
as a function of the shock parameters η1, µ1 and η2, µ2) can be written as

ρ2(x, µ1, η1, µ2, η2) = J(−ν1)I(µ1, η1) [δ(x+ ν1 − ν2 − µ1)

+θ(x+ ν1 − ν2 − µ1)H(x,−µ1 + ν1, ν2)] I(µ2, η2)J(−µ2 + ν2), (50)

with νi = µi/2− ηi/µi, i = 1, 2, and the functions I , J and H as defined above.

We denote ρ(nn)
2 (x; µ1, η1; µ2, η2) the probability density of two nearest neighbours

shocks separated by a distance x; ρ(nn)
2 (x; µ1, η1; µ2, η2) is given by the formula (50) with

the H function omitted. Then, the conditional probability density ρ(nn)(µ1, η1|x, µ2, η2)
that given a shock µ1, η1 at x = 0, the next shock µ2, η2 occurs at x > 0 is found to be

ρ(nn)(µ1, η1|x, µ2, η2) =
ρ

(nn)
2 (x; µ1, η1; µ2, η2)

ρ1(µ1, η1)

= δ

(
x− η1

µ1

+
η2

µ2

− µ1 + µ2

2

) I(µ2, η2)J

(
−µ2

2
− η2

µ2

)
J

(
−µ1

2
− η1

µ1

) . (51)

This conditional probability has the normalization∫ ∞
0

dx

∫ ∞
0

dµ2

∫ ∞
−∞

dη2 ρ
(nn)(µ1, η1|x, µ2, η2) = 1 (52)

which leads to the following integral relation between the functions I and J

J(ν) =

∫ ∞
0

dµ

∫ ∞
−∞

dη θ

(
µ

2
− η

µ
− ν
)
I(µ, η)J

(
−µ

2
− η

µ

)
. (53)

This analysis shows that the one-point and the two-point distribution functions
of the Burgers velocity field u(x) as well as of the statistics of shocks are entirely
determined by the knowledge of three functions I , J and H defined in (49), (37) and
(42). Finally, these last three functions can be computed from the basic transition
kernel Kν given by equation (29).
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4. The functions I and J and the one-point distribution
In this section we give explicit expressions for the functions I(µ, η) and J(ν) defined,

respectively, by equations (49) and (37). Through equations (38) and (48), we will
then obtain explicit forms for the one-point distribution function of the velocity field
p1(u) and of the shocks ρ1(µ, η).

Using the form (29) of the transition density Kν in equation (49) we have that

I(µ, η) = 2a3 exp

(
−a3

[
η2

µ
+
µ3

12

])
I(µ). (54)

We set a = (2D)−1/3 and

I(µ) =
∑
k> 1

e−aωkµ (55)

where −ωk , k> 1, are the zeros of the Airy function. This last expression has already
been found by Burgers (1974). Our point here is to give a closed form for the function
J(ν) and thus for the one-point distributions. Inserting (29) into (37) and changing
the variable x = −(2/D2)1/3(η2 − sν(µ2)) leads to

J(ν) =
√
a lim
µ→∞ e−a

3[(µ−ν)3+ν3]/3

∫ ∞
0

dx eax(µ−ν)∑
k> 1

e−aωkµ
Ai(x− ωk)
Ai′(−ωk) . (56)

It is convenient to introduce the following integral representation of the sum for
µ > 0∑
k> 1

e−aωkµ
Ai(x− ωk)
Ai′(−ωk) =

1

2πi

∫
C

dw eawµ
Ai(w + x)

Ai(w)
=

1

2πi

∫ i∞

−i∞
dw eawµ

Ai(w + x)

Ai(w)
(57)

where the contour C runs just above and below the negative real w-axis encircling
the zeros of the Airy function. From the asymptotics,

Ai(w) = (4π
√
w)−1/2e−2w3/2/3

(
1 + O(w−3/2)

)
(|w| → ∞, |argw| < π), (58)

for w = |w|eiθ , π/26 θ < π, it can be deduced that |Ai(w + x)/Ai(w)| ∼ exp (−x|w|1/2
cos(θ/2)), |w| → ∞, cos(θ/2) > 0. For θ = π, the factor eawµ ensures the convergence
in (57). Hence, for µ > 0, the contour C can be deformed and it can be shown that
the unique contribution to the integral comes from the imaginary axis −i∞ < w < i∞
leading to the last part of the identity (57). After exchange of the integrations order,
it is found that

J(ν) =
√
a lim
µ→∞ e−a

3[(µ−ν)3+ν3]/3 1

2iπ

∫ i∞

−i∞
dw

eaµw

Ai(w)

∫ ∞
0

dx e−ax(ν−µ)Ai(x+ w). (59)

To proceed, we determine first the Laplace transform of f(x) = Ai(x+ w), w fixed,

f̃(s) =

∫ ∞
0

dx e−xsf(x). (60)

The function f(x) is the solution of the second-order differential equation

f′′(x)− (x+ w)f(x) = 0, (61)

with f(0) = Ai(w) and f′(0) = Ai′(w). The Laplace transform of this equation is

f̃′(s) + (s2 − ω)f̃(s) = sf(0) + f′(0), (62)



Exact statistical properties of the Burgers equation 335

0.8

0.6

0.4

0.2

0
–3 –1 1 3

u

p1(u)

Figure 3. The one-point distribution function (68) for the velocity field p1(u) as a function of u for
D = 1/2 (a = 1). Its asymptotic behaviour (equation (71)), is also plotted (dashed lines).

with solution

f̃(s) =

(
f̃(0) +

∫ s

0

dσ (σf(0) + f′(0))e−wσ+σ3/3

)
ews−s

3/3, (63)

f̃(0) =

∫ ∞
0

dxAi(x+ w) = −π [Ai′(w)Gi(w)−Ai(w)Gi′(w)
]
, (64)

where Gi(w) = π−1
∫ ∞

0
dt sin(t3/3 + wt) Abramowitz & Stegun (1970).

Inserting this Laplace transform into equation (59) and using various properties of
the Airy functions (Abramowitz & Stegun (1970)) leading to the identity

f̃(0)−
∫ 0

−∞
dσ (σf(0) + f′(0))e−ωσ+σ3/3 = 1, (65)

we eventually find

J(ν) =
√
ae−a

3ν3/3J(ν) (66)

with

J(ν) =
1

2iπ

∫ i∞

−i∞
dw

eaνw

Ai(w)
. (67)

Note that this integral is convergent for positive and negative ν.
With the explicit form (66) of the function J(ν), the one-point distribution function

p1(u) of the velocity field is given by

p1(u) = J(u)J(−u) = aJ(u)J(−u) (68)

which is plotted in figure 3.
Defining the moments of the distribution as 〈un〉 =

∫
du unp1(u) we have 〈u〉 = 0 as

p1(u) = p1(−u) and 〈u2〉 = m1(D/2)2/3 with a constant m1 ' 1.054. The normalization
(18) is verified as, from (68),∫ ∞

−∞
du p1(u) =

1

2iπ

∫ i∞

−i∞
dw

[Ai(w)]2
(69)

can be shown to be equal to one.
To determine the asymptotic behaviour of p1(u), we remark that for positive u, we
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can close the contour in (67) to encircle the poles of the integrand and thus express
J(u) as a sum on the zeros of the Airy function

J(u) =
∑
k> 1

e−auωk

Ai′(−ωk) (u > 0). (70)

Hence, J(u) ∼ e−auω1/Ai′(−ω1) as u → ∞. The behaviour of J(u) for u → −∞ can
be determined with the Laplace method to be J(u) ∼ −2au exp(a3u3/3) and so the
large |u| behaviour of p1(u) reads

p1(u) ∼ 2a2|u|
Ai′(−ω1)

exp

(
−a

3|u|3
3
− a|u|ω1

)
(|u| → ∞). (71)

This result is, of course, compatible with the bounds found in Avellaneda (1995)
and Ryan (1998a), but cubic bounds cannot be saturated because of the additional
exponential decay exp(−a|u|ω1). Starting from a Gaussian distributed initial velocity
field u(x, 0), the field immediately evolves to a distribution which is not Gaussian but
behaves as equation (71).

Let us turn now to the one-shock distribution function ρ1(µ, η). Collecting results
from equations (48), (54) and (66), we find

ρ1(µ, η) = J

(
η

µ
− µ

2

)
I(µ, η)J

(
−η
µ
− µ

2

)
= 2a4J

(
η

µ
− µ

2

)
I(µ)J

(
−η
µ
− µ

2

)
(72)

with I and J defined in (55) and (67), respectively.
One can compute the shock strength distribution defined as

ρ1(µ) =

∫ ∞
−∞

dη ρ1(µ, η). (73)

Inserting (72) in this last equation, we find after the change of variables w = iζ and
η′ = aη/µ

ρ1(µ) = 2a3µI(µ)
1

(2π)2

∫ ∞
−∞

dζ1

∫ ∞
−∞

dζ2

e−iaµ(ζ1+ζ2)/2

Ai(iζ1)Ai(iζ2)

∫ ∞
−∞

dη′eiη′(ζ1−ζ2) (74)

which reduces to

ρ1(µ) = 2a3µI(µ)H(µ) (75)

with

H(µ) =
1

2iπ

∫ i∞

−i∞
dw

e−aµw

Ai2(w)
. (76)

The form of the shock strength distribution (75) is plotted in figure 4. Notice that
L〈µ〉 is the space covered by the shock strength in a box of size L; it is equal to L
and thus

∫ ∞
0

dµ µρ1(µ) = 1.
We can now determine the behaviour of the shock strength distribution for small

and large shocks. For 0 < µ � 1, we use the normalization condition (18) to find
H(µ) = 1 + O(µ) while the behaviour of I(µ) can be determined from the large k
asymptotic behaviour of the zeros of the Airy function ωk = (3πk/2)2/3 + O(k−1/3) to
give I(µ) ∼ (2

√
π(aµ)3/2)−1. One thus obtains

ρ1(µ) =

√
a3

πµ
+ O(µ1/2) (µ→ 0). (77)
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Figure 4. Shock strength distribution ρ1(µ) for D = 1/2 (a = 1 in equation (75)). Its asymptotic
behaviours (equations (77) and (78)) are also plotted (dashed lines).
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Figure 5. Shock wavelength distribution ρ1(ν) for D = 1/2 (a = 1 in equation (75)).

The divergence µ−1/2, as µ → 0, has been found in Avellaneda & E (1995) and seen
in numerical simulations (Kida 1979).

On the other hand, for large µ, the behaviour of the functionH(µ) can be estimated
by the Laplace method to find H(µ) ∼ (πa3µ3)1/2 exp (−a3µ3/12). The behaviour of
the function I(µ) is immediately given by the largest zero of the Airy function to
give I(µ) ∼ exp (−ω1aµ). We thus have

ρ1(µ) = 2
√
πa9/2µ5/2 exp

(− 1
12
a3µ3 − ω1aµ

)
(µ→∞). (78)

Let us consider now the shocks wavelength distribution. The one-shock distribution
(72) can be written for the strength-wavelength variables (µ, ν) as (the additional µ
factor is the Jacobian of the transformation (µ, η) to (µ, ν))

ρ1(µ, ν) = 2a4µJ(−ν)I(µ)J(ν − µ). (79)

Considering the variable ν ′ = ν−µ/2 we find that the (µ, ν ′) distribution is symmetric
in ν ′, implying 〈ν ′〉 = 0 and thus 〈ν〉 = 〈µ〉/2 = 1/2. The wavelength distribution
ρ1(ν) =

∫ ∞
0

dµ ρ1(µ, ν) is plotted in figure 5. Its asymptotic behaviour is found to
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Figure 6. Distribution p[0,x) of intervals [0, x) which contains no shocks for D = 1/2 (a = 1 in
equation (80)).

be ρ1(ν) ∼ C+ν
3 exp (−a3ν3/3 − aνω1), ν → ∞, and ρ1(ν) ∼ C− exp (a3ν3/3 + aνω1),

ν → −∞. Note that the wavelength distribution is not symmetrical around ν = 1/2.
The density distribution p[0,x) of intervals of size x with no shocks (47) is given by

p[0,x) =

∫ ∞
−∞

du1 J(−u1)J(x+ u1)

=

√
π

ax
exp

(
−a

3x3

12

)
1

(2π i)2

∫ i∞

−i∞
dω1

∫ i∞

−i∞
dω2

exp

(
ax

2
(ω1 +ω2)+

(ω1−ω2)
2

4ax

)
Ai(ω1)Ai(ω2)

(80)

which is plotted in figure 6. Since limx→0 p[0,x)(u1) = p1(u1), (see equation (46)), and
p1(u) is normalized (18), we have limx→0 p[0,x) = 1. Asymptotically, we have for x→∞

p[0,x) ∼
√

π

ax

exp

(
−a

3x3

12
− aω1x

)
[
Ai′(−ω1)

]2 (
1 + O

(
1

x

))
. (81)

5. Correlations
In this section we study the two-point distributions of the Burgers velocity field

and of the shocks in the asymptotic limit x → ∞, keeping all the other arguments
fixed. From (45) and (50), we have for x large enough

p2(x, u1, u2) = J(−u1)H(x, u1, u2)J(u2) (82)

and

ρ2(x, µ1, η1, µ2, η2) = J(−ν1)I(µ1, η1)H(x,−µ1 + ν1, ν2)I(µ2, η2)J(−µ2 + ν2), (83)

with the functions J and I given by equations (66) and (54) and where the function
H is defined by equation (42) with νi = µi/2− ηi/µi.
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Our main results are

p2(u1, u2, x)− p1(u1)p1(u2)

∼ − 8
√
π

a1/2x5/2
exp

(
−a

3x3

12
− aω1x

)
exp (−aω1(u1 − u2))J(−u1)J(u2) (x→∞) (84)

and similarly for the distribution of shocks

ρ2(µ1, η1, µ2, η2, x)− ρ1(µ1, η1)ρ1(µ1, η1) ∼ −a11/2 32
√
π

x5/2
exp

(
−a

3x3

12
− aω1x

)
× exp (−aω1(ν1 − ν2 − µ1))J(−ν1)I(µ1)I(µ2)J(−µ2 + ν2) (x→∞). (85)

We see that long distance correlations are very weak since they are again dominated
by the cubic decaying factor exp (−a3x3/12).

Clearly, in view of (82) and (83), this asymptotic behaviour is determined by that
of the function H(x, ν1, ν2). First, we write H(x, ν1, ν2) in explicit form by introducing
(29) into (42). It is useful to remember that, by the definition of (µ∗, η∗), η∗ = sν1

(µ∗) =
q + sν2

(µ∗ − x − ν1 + ν2). To bring the expression in the most symmetric form, the
change of integration variables

ζ = (D2/2)1/3(η∗ − η′) (0 < ζ < ∞)

r =
1√
x

(
q +

ν2
1

2
− ν2

2

2

) (
−√xr16 r6√xr2, r1 =

x

2
+ ν1, r2 =

x

2
− ν2

)
 (86)

turns out to be adequate. Then, with a = (2D)−1/3,

H(x, ν1, ν2) = 2a3 exp

(−a3ν3
1 + a3ν3

2

3

)√
x exp

(
−a

3x3

12

)∫ √xr2
−√xr1

dr exp(−a3r2)

×
∫ ∞

0

dζeaζx
∑
k1 ,k2

exp

[
−aωk1

(
r1 +

r√
x

)
− aωk2

(
r2 − r√

x

)]
Ai(ζ − ωk1

)Ai(ζ − ωk2
)

Ai′(−ωk1
)Ai′(−ωk2

)
.

(87)

Our main concern is to determine the asymptotic behaviour of this expression as
x→∞. We give here the main steps of the calculation while details and justifications
are given in the appendices.

To obtain the basic clustering properties of the model, we expect that
limx→∞H(x, ν1, ν2) = J(ν1)J(−ν2) with J(ν) given by the integral in the complex
plane equation (66). It is therefore natural to replace the sums on the zeros of Airy
functions in (87) by appropriate contour integrals, as in § 4,∑
k1 ,k2

exp

[
−aωk1

(
r1 +

r√
x

)
− aωk2

(
r2 − r√

x

)]
Ai(ζ − ωk1

)Ai(ζ − ωk2
)

Ai′(−ωk1
)Ai′(−ωk2

)
=

1

(2πi)2

∫
Cx

dw1

∫
Cx

dw2 exp

[
aw1

(
r1 +

r√
x

)
+ aw2

(
r2 − r√

x

)]
Ai(ζ + w1)Ai(ζ + w2)

Ai(w1)Ai(w2)
.

(88)

For a given x, the contour Cx is chosen as the parabola with branches w±(ρ) =
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−ρ ± i ax
√
ρ, 06 ρ < ∞. This contour will be convenient to determine the large x

asymptotics of H(x, ν1, ν2). The integrals (88) on Cx converge for r fixed because of
the exponentially decreasing factors

exp

[
aw1

(
r1 +

r√
x

)
+ aw2

(
r2 − r√

x

)]
,

(Rew1 < 0),

(
Rew2 < 0, r1 +

r√
x
> 0, r2 − r√

x
> 0

)
,

(see Appendix A).

Next, we exchange the ζ-integral with the contour integrals to obtain

H(x, ν1, ν2) = 2a3 exp

(−a3ν3
1 + a3ν3

2

3

)√
x exp

(
−a

3x3

12

)∫ √xr2
−√xr1

dr exp (−a3r2)

× 1

(2πi)2

∫
Cx

dw1

∫
Cx

dw2 exp

[
aw1

(
r1 +

r√
x

)
+ aw2

(
r2 − r√

x

)]
B(ax, w1, w2)

Ai(w1)Ai(w2)
(89)

where

B(x, w1, w2) =

∫ ∞
0

dζeζxAi(ζ + w1)Ai(ζ + w2) (90)

is the Laplace transform of a product of Airy functions evaluated at the negative
argument −x. This Laplace transform is computed in Appendix B and is given as the
difference of two terms B(x, w1, w2) = B1(x, w1, w2)−B2(x, w1, w2) (see equation (B 9)).
We set H(x) = H1(x)−H2(x) with H1(x) (respectively, H2(x)) the contribution to (89)
of B1(x, w1, w2) (respectively, B2(x, w1, w2)). Then

H1(x) =
a5/2

√
π

exp

(−a3ν3
1 + a3ν3

2

3

)∫ √xr2
−√xr1

dr
1

(2πi)2

∫
Cx

dw1

∫
Cx

dw2 h1(η, w1, w2) (91)

with

h1(r, w1, w2) =

exp

[
−a3

(
r − w1 − w2

2a2
√
x

)2

+ aw1ν1 − aw2ν2

]
Ai(w1)Ai(w2)

. (92)

It is shown in Appendix C that the multiple integral in (91) is absolutely convergent.
As x → ∞, the contour Cx eventually opens to the imaginary axis of the w-plane.
Hence, it can be seen (formally) on (91) that

lim
x→∞H1(x) = a exp

(−a3ν3
1 + a3ν3

2

3

)
1

(2πi)2

∫ i∞

−i∞
dw1

∫ i∞

−i∞
dw2

exp(aw1ν1 − aw2ν2)

Ai(w1)Ai(w2)

= J(ν1)J(−ν2), (93)

where the function J(ν) is defined by equation (66). More precisely, it is found that
the asymptotic behaviour of H1(x) is given by (Appendix C)

H1(x) = J(ν1)J(−ν2) + O

(
exp

(
−a

3x3

12
(1 + c)

))
(c > 0). (94)
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Inserting the expression B2(x) (B 9) in (89) gives

H2(x) = 2a5/2 exp

(−a3ν3
1 + a3ν3

2

3

)∫ √xr2
−√xr1

dr e−a
3r2

× 1

(2πi)2

∫
Cx

dw1

∫
Cx

dw2 exp

(
aw1

(
r1 +

r√
x

)
+ aw2

(
r2 − r√

x

))∫ ∞
ax

dy
√
y

× exp

(
− y

3

12
+
w1 + w2

2
(y − ax)− (w1 − w2)

2

4

(
1

ax
− 1

y

))
g(y, w1, w2)

Ai(w1)Ai(w2)
. (95)

Because of the convergence factors, exp (aw1(r1+r/
√
x)+aw2(r2−r/√x)), the contours

Cx can be closed and the corresponding integrals can again be evaluated at the zeros
of the Airy functions (the arguments are similar to those given in Appendix A). Then
the relation (B 10) allows the result to be simplified to

H2(x) = 2a5/2 exp

(−a3ν3
1 + a3ν3

2

3

)∫ √xr2
−√xr1

dr e−a
3r2

×∑
k1 ,k2

exp

(
−aωk1

(
r1 +

r√
x

)
− aωk2

(
r2 − r√

x

))

×
∫ ∞
ax

dy
1√
y

exp

(
− y

3

12
− ωk1

+ ωk2

2
(y − ax)− (ωk1

− ωk2
)2

4

(
1

ax
− 1

y

))
. (96)

To compute the large x behaviour it is convenient to make the change of integration
variable y = z/x2 + ax giving

H2(x) = 2a2 exp

(−a3ν3
1 + a3ν3

2

3

) exp
(
− a3x3

12

)
x5/2

G(x) (97)

with

G(x) =

∫ ∞
0

dz

exp

(
− z3

12x6
− az2

4x3
− a2z

4

)
√

1 +
z

ax3

∫ √xr2
−√xr1

dr e−a
3r2

×∑
k1 ,k2

exp

(
−(ωk1

− ωk2
)2 z

4a(zx+ ax4)

)
× exp

(
−aωk1

(
r1 +

r√
x

+
z

2ax2

)
− aωk2

(
r2 − r√

x
+

z

2ax2

))
. (98)

Letting formally x → ∞ in this formula gives the asymptotic behaviour (details are
found in Appendix D)

H2(x) ∼ 8
√
π

a3/2x5/2
exp

(−a3ν3
1 + a3ν3

2

3
− aω1(ν1 − ν2)

)
exp

(
−a

3x3

12
− aω1x

)
(99)

where −ω1 is the first zero of the Airy function.
Inserting the asymptotics equations (99) and (94) into the expression for the two-

point distributions equations (82) and (83) leads to the results equations (84) and
(85).
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6. Conclusion
To conclude, we remark that the previous results allow for a complete statistical

description of the Burgers field. As mentioned in § 1, for white noise initial data,
u(x) is a Markov process as a function of x Avellaneda & E (1995). Thus, with
P (x2, u2|x1, u1) = p2(x2−x1, u1, u2)/p1(u1) the transition kernel for the Markov process,
the n-point distribution can be written as

pn(x1, u1; . . . ; xn, un) = P (xn, un|xn−1, un−1) . . . P (x2, u2|x1, u1)p1(x1, u1)

=

n−1∏
i=1

p2(xi+1 − xi, ui, ui+1)

n−1∏
i=2

p1(ui)

(n> 3). (100)

On the same line, a complete statistical description of shocks in Burgers solution is
obtained through the n-shocks distribution densities which factorize to

ρn(x1, µ1, η1, . . . , xn, µn, ηn) =

n−1∏
i=1

ρ2(xi+1 − xi, µi, ηi; µi+1, ηi+1)

n−1∏
i=2

ρ1(µi, ηi)

(n> 3). (101)

The distribution of ordered sequences of next neighbouring shocks is obtained from
(101) by omitting the function H in ρ2, equation (50). Here, factorization follows
simply from the Markov property of Brownian motion and the fact that multiple
constraints of the form (16) decouple. From the point of view of the hierarchy of
kinetic equations that governs the dynamics of shocks, this factorization corresponds
to an exact closure of this hierarchy or to an exact propagation of chaos. This is
discussed in Frachebourg et al. (2000).

As far as the time dependence is concerned, it can be reintroduced via the basic
transition kernel (29), which should be computed with sν(y) replaced by sν(y)/t. Owing
to the invariance of the Brownian measure under the change ψ(y)→ t1/3ψ(y/t2/3), it is
found that Kν(µ1, η1, µ2, η2; t) = t−1/3Kν ′(µ

′
1, η
′
1, µ
′
2, η
′
2) where the variables are rescaled

according to µ′i = µit
−2/3, η′i = ηit

−1/3, and ν ′ = νt−2/3. From (37), (49) and (42) this
implies the transformation laws of the functions J , I and H

J(ν; t) = t−1/3J(ν ′),

I(µ, η; t) = t−1I(µ′, η′),

H(x, ν1, ν2, t) = t−2/3H(x′, ν ′1, ν ′2)

 (102)

where x′ = xt−2/3. This leads to the time-dependent distributions

pn(x1, u1; . . . ; xn, un; t) = tn/3pn(x
′
1, u
′
1; . . . ; x

′
n, u
′
n), (103)

with u′i = uit
1/3, and

ρn(x1, µ1, η1; . . . ; xn, µn, ηn; t) = t−5n/3ρn(x
′
1, µ
′
1, η
′
1; . . . ; x

′
n, µ
′
n, η
′
n). (104)

To obtain (103), we recall that the distributions pn(x1, u1; . . . ; xn, un) were calculated
from those of the coordinates of the contact points xi − ξi. At time t 6= 1, xi − ξi =
uit introduces a Jacobian tn included in (103) when expressing the distributions
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as functions of the Burgers field amplitudes ui. From there, the well-known time-
dependent behaviour of some moments of the distributions is recovered, e.g., the
energy dissipation per unit of length 〈u2(x, t)〉 ∼ t−2/3, the average number of shocks
per unit of length ∼ t−2/3, the average strength of a shock 〈µ/t〉 ∼ t−1/3.

We mention a few problems that could be approached with the tools developed in
this paper. An interesting quantity is the distribution of the velocity differences

Prob{u(x, t = 1)− u(0, t = 1) = ∆u} =

∫
dup2(u, u+ ∆u, x) ≡ p(∆u, x) (105)

and in particular its asymptotics as ∆u → −∞, which gives the probability for a
large velocity drop over a fixed interval x. This information cannot be extracted in
a straightforward manner from the estimations of § 5 since the latter are valid for
fixed u and large x and they are not uniform with respect to the field amplitude. The
temporal correlations of the field at different times

Prob{u(x1, t1) = u1, u(x2, t2) = u2} ≡ p2(x1, u1, t1, x2, u2, t2) (106)

could in principle be analysed by similar methods. They will involve two Brownian
propagators K (t1) and K (t2) of the form (29) but related to parabolic barriers with
different curvatures. An interesting case is white noise initial distribution with a
space dependent strength D = D(x) corresponding to inhomogeneous initial data
(compactly supported white noise is studied in Tribe & Zabronski). More generally
we expect that these methods will work whenever the initial potential Ψ (x, 0) is a
process with independent increments; all probability distributions will eventually be
expressed in terms of the corresponding transition kernel constrained by the parabolic
barriers.

The study of the statistics of the Burgers field with other types of initial distributions
is the subject of numerous recent works. There is a first natural generalization to the
case when the initial potential Ψ (x, 0) is a fractional Brownian process

〈(Ψ (x, 0)−Ψ (y, 0))〉 = D|x− y|γ (0 < γ < 2). (107)

For γ = 1 (the case of the present paper), there is a finite number of shocks in finite
intervals (see Avellaneda 1995; Avellaneda & E 1995). The same is expected to hold
for all γ, 0 < γ < 2. In such cases, it has been shown that the distribution of large
fields Prob{u(x, t)> u} has upper and lower bounds of the type C1 exp (−C2u

4−γt2−γ)
depending on the exponent γ. Similar estimates hold for the distribution of shock
strength (Molchan 1997; Ryan 1998b). There is a striking difference when it is as-
sumed that the initial Burgers field has itself fractional Brownian statistics (namely
u(x, 0) obeys (107)). Then, at any time t > 0, the set points at which shocks occur
are expected to be dense; this has been proved for γ = 1 (She, Aurell & Frisch
1992; Sinai 1992; Bertoin 1998). In this situation there is a dense set of vanishingly
small shocks, but the average number of finite size shocks, say µ> µ0, is bounded
above and below at fixed time by C1 exp (−C2µ

2−γ) (Molchan 1997). To conclude, we
refer to the paper (Gurbatov et al. 1997) for a review of the situations where the
initial potential Ψ (x, 0) is a spatially homogeneous Gaussian process. Kida (1979)
initiated this study when the initial potential correlations decrease rapidly at large
distance. This is also an instance where in an appropriate scaling limit the distribu-
tion and the correlations of the Burgers field can be obtained in closed analytical
form (see chap. 5 of Gurbatov et al. 1991; Molchanov, Surgailis & Woyczyński
1995).
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Appendix A
We justify in this appendix the equation (88) which replaces the sum on zeros of

the Airy function by an integral in the complex plane.
To evaluate Ai(w) on the branch w+(ρ) = −ρ+ i ax

√
ρ, we start from the formula

Ai(−w) = eiπ/3Ai(weiπ/3) + e−iπ/3Ai(we−iπ/3) (Abramowitz & Stegun 1970) giving (the
formula enables us to obtain the asymptotic behaviour of the Airy function Ai(w)
when argw approaches π as is the case for w±(ρ), ρ→∞)

Ai(w+(ρ)) = eiπ/3Ai(−w+(ρ)eiπ/3) + e−iπ/3Ai(−w+(ρ)e−iπ/3)

∼
(

1√
4π(w+(ρ))1/4

)(
exp

(−i 2
3
(−w+(ρ))3/2

)
+ exp

(
i 2

3
(−w+(ρ))3/2

))
(A 1)

where we have used the asymptotic behaviour (58) of the Airy function Ai(w) for
|w| → ∞, argw 6= π. As ρ→∞,

(−w+(ρ))3/2 = (ρ− i ax
√
ρ)3/2 = ρ3/2 − i 3

2
axρ− 3

8
a2x2√ρ− i a3 x

3

16
+ O

(
x4

√
ρ

)
(A 2)

Upon inserting (A 2) into (A 1), it can be seen that∣∣∣∣ 1

Ai(w+(ρ))

∣∣∣∣ 6Cρ,x exp

(
−axρ− a3x3

24

)
(A 3)

with Cρ,x growing at most algebraically with ρ and x. Using Ai(w∗) = Ai∗(w) the
same estimate on the branch w−(ρ) is obtained. By a similar calculation, for fixed ζ,
Ai(ζ + w±(ρ))/Ai(w±(ρ)) remains bounded as ρ→∞.

Consider now the finite parabolic contour closed by a circular arc Reiθ with θ close
to π. On this circular arc for large radius R

Ai(ζ +Reiθ)

Ai(Reiθ)
∼
( Reiθ

ζ +Reiθ

)1/4

exp
(− 2

3
(ζ +Reiθ)3/2 + 2

3
(Reiθ)3/2

)
∼
( Reiθ

ζ +Reiθ

)1/4

exp (−ζ√Reiθ/2) = O(1) (A 4)

as R → ∞ and π/26 θ6 π. Since (r1 + r/
√
x) > 0, (r2 − r/√x) > 0, the factors

exp (aw1(r1 + r/
√
x)) and exp (aw2(r2 − r/√x)) decay exponentially fast when w1 and

w2 are on the contour Cx or on the circular arc. It is concluded that the integrals on
the circular arcs vanish as R → ∞ so that the sums in (88) can indeed be replaced
by the contour integrals.

Appendix B
The integral B(x) (90)

B(x) =

∫ ∞
0

dζeζxAi(ζ + w1)Ai(ζ + w2) (B 1)

is the Laplace transform for a negative argument −x of the product f(ζ) = Ai(ζ +
w1)Ai(ζ + w2) of two Airy functions (omitting w1 and w2 from the notation). First,
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the asymptotic behaviour of B(x) is determined by the Laplace method

B(x) ∼ 1

2
√
π

eΦ(x) (x→∞) (B 2)

where

Φ(x) =
x3

12
− x

2
(w1 + w2)− 1

2
ln x− (w1 − w2)

2

4x
. (B 3)

From the property of the Airy function (28), f(ζ) verifies the fourth-order differential
equation

f′′′′(ζ)− (4ζ + 2w1 + 2w2)f
′′(ζ)− 6f′(ζ) + (w1 − w2)

2f(ζ) = 0. (B 4)

From (B 4), it is found that its Laplace transform for negative arguments satisfies

B′(x)− h(x)B(x) = g(x) (B 5)

where we remark that

h(x) = Φ′(x) (B 6)

and with

g(x) =
x

4
f(0)− 1

4
f′(0) +

1

4x

[
(f′′(0)− 2(w1 + w2)f(0)

]
− 1

4x2

[
f′′′(0)− 2f(0)− 2(w1 + w2)f

′(0)
]
. (B 7)

Equation (B 5) can be solved, using also the value (B 2) for x→∞,

B(x) = B1(x)− B2(x) (B 8)

with

B1(x) =
1

2
√
π

eΦ(x), B2(x) = eΦ(x)

∫ ∞
x

dye−Φ(y)g(y). (B 9)

Notice that when evaluated at the zeros of the Airy functions w1 = −ωk1
, w2 = −ωk2

,
g(y) reduces to

g(y)

∣∣∣∣w1=−ωk1 , w2=−ωk2 =
Ai′(−ωk1

)Ai′(−ωk2
)

2y
. (B 10)

Appendix C
We consider the multiple integral H1(x) (91) and show first that it is absolutely

convergent. On the contour w±(ρ) = −ρ± i ax
√
ρ, 06 ρ < ∞, we have

<
(
r − w1 − w2

2a2
√
x

)2

=

(
r +

ρ1 − ρ2

2a2
√
x

)2

− x

4a2
(
√
ρ1 ±√ρ2)

2. (C 1)

Hence, using (
√
ρ1 ±√ρ2)

26 2(ρ1 + ρ2) and (A 3), the integrand (92) is bounded by

|h1(r, w1, w2)| 6Cρ1 ,ρ2 ,x exp

(
−a

3x3

12

)
× exp

{
−ax(ρ1 + ρ2)− aρ1ν1 + aρ2ν2 − a3

(
r +

ρ1 − ρ2

2a2
√
x

)2

+
ax

4

(√
ρ1 ±√ρ2

)2

}

6Cρ1 ,ρ2 ,x exp

(
−a

3x3

12

)
exp

{
−aρ1r1 − aρ2r2 − a3

(
r +

ρ1 − ρ2

2a2
√
x

)2
}

(C 2)
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with Cρ1 ,ρ2 ,x increasing at most algebraically, showing that the integral (91) converges
absolutely.

To obtain the asymptotic behaviour (94) of H1(x) we write the integration of
h1(r, w1, w2) over r as∫ √xr2

−√xr1
dr h1(r, w1, w2) =

(∫ ∞
−∞

dr −
∫ −√xr1
−∞

dr −
∫ ∞
√
xr2

dr

)
h1(r, w1, w2). (C 3)

The first integration is readily performed to give J(ν1)J(−ν2) (see equation (93)) as
J(ν) (66) can be represented as an integral on any contour that encircles the zeros of
the Airy function, in particular on Cx. Thus, it follows from (91) that

H1(x)− J(ν1)J(−ν2) = −a
5/2

√
π

exp

(−a3ν3
1 + a3ν3

2

3

)
×
(∫ −√xr1

−∞
dr +

∫ ∞
√
xr2

dr

)
1

(2πi)2

∫
Cx

dw1

∫
Cx

dw2 h1(η, w1, w2). (C 4)

Consider the contribution to (C 4) where r>
√
xr2 and the branches of Cx are

w+(ρ1), w
+(ρ2). With (C 2) this contribution is majorized by∣∣∣∣∫ ∞√

xr2

dr

∫
w+

dw1

∫
w+

dw2 h(r, w1, w2)

∣∣∣∣ 6 exp

(
−a

3x3

12

)∫ ∞
√
xr2

dr

∫ ∞
0

dρ1

∫ ∞
0

dρ2

×
∣∣∣∣dw+(ρ1)

dρ1

∣∣∣∣ ∣∣∣∣dw+(ρ2)

dρ2

∣∣∣∣Cρ1 ,ρ2 ,x exp

{
−aρ1r1 − aρ2r2 − a3

(
r +

ρ1 − ρ2

2a2
√
x

)2
}

(C 5)

We split the ρ2 integral into the domains 06 ρ26 a2
√
xr and a2

√
xr6 ρ2 < ∞. When

06 ρ26 a2
√
xr, ρ1> 0, r>

√
xr2 =

√
x(x/2− ν2) then(

r +
ρ1 − ρ2

2a2
√
x

)2

>

(
r

2
+

ρ1

2a2
√
x

)2

>
( r

2

)2

>
r2

8
+
r2

2x

8
>
r2

8
+ cx3 (C 6)

where the last inequality holds for x large enough with c > 0, and thus

exp

{
−a3

(
r +

ρ1 − ρ2

2a2
√
x

)2
}
6 exp

{
−a3 r

2

8
− ca3x3

}
. (C 7)

On the other hand, when ρ2> a2
√
xr, r>

√
xr2,

ρ2r2>
1
2
ρ2r2 + 1

2
a2r
√
xr2>

1
2
ρ2r2 + 1

2
a2r2

2 >
1
2
ρ2r2 + cx3 (C 8)

where the last inequality holds for x large enough with c > 0. This leads to

exp (−aρ2r2)6 exp
(− 1

2
aρ2r2 − acx3

)
. (C 9)

The bounds (C 7) and (C 9) are introduced in (C 5), the remaining r, ρ1, ρ2 integrals
are convergent and bounded with respect to x (except for a polynomial growth due to
Cρ1 ,ρ2 ,x and the line elements |dw(ρ)/dρ| =

√
1 + a2x2/4ρ ). The other contributions

to (C 4) are treated in the same way. This leads to the result (94).
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Appendix D
We determine here the asymptotic behaviour of G(x) (98) for large x. Starting from

G(x) =

∫ ∞
0

dz

∫ √xr2
−√xr1

dr
∑
k1 > 1

∑
k2 > 1

Gk1 ,k2
(z, r; x) (D 1)

with

Gk1 ,k2
(z, r; x) =

exp

(
− z3

12x6
− az2

4x3
− a2z

4

)
√

1 +
z

ax3

e−a
3r2

exp

(
−(ωk1

− ωk2
)2 z

4a(zx+ ax4)

)

× exp

[
−aωk1

(
r1 +

r√
x

+
z

2ax2

)
− aωk2

(
r2 − r√

x
+

z

2ax2

)]
(D 2)

we define

F(x) = eaω1r1+aω1r2G(x) (D 3)

where r1 = x/2 + ν1, r2 = x/2− ν2 and −ω1 is the largest zero of the Airy function.
We then decompose F(x) = Fa(x) + Fb(x) + Fc(x) according to the following splitting
of the r integration range and the k1, k2 summations (for x large):

Fa(x) =

∫ ∞
0

dz

∫ r2

−r1
dr eaω1r1+aω1r2G1,1(z, r; x) (D 4)

Fb(x) =

∫ ∞
0

dz

∫ r2

−r1
dreaω1r1+aω1r2

(∑
k1 > 1

∑
k2 > 1

Gk1 ,k2
(z, r; x)−G1,1(z, r; x)

)
(D 5)

Fc(x) =

∫ ∞
0

dz

(∫ √xr2
r2

dr +

∫ −r1
−√xr1

dr

)
eaω1r1+aω1r2

∑
k1 > 1

∑
k2 > 1

Gk1 ,k2
(z, r; x). (D 6)

By dominated convergence, we immediately obtain

lim
x→∞Fa(x) =

∫ ∞
0

dz exp

(
−a

2z

4

)∫ ∞
−∞

dr exp (−a3r2) =
4
√
π

a7/2
. (D 7)

We then show below that Fb(x) and Fc(x) vanish as x→∞ leading to the asymptotic
behaviour

G(x) ∼ 4
√
π

a7/2
e−aω1(x+ν1−ν2) (x→∞), (D 8)

and thus to the behaviour of H2(x), equation (99).
Since −r16 r6 r2 in the integral (D 5), x can be chosen large enough so that

r1 + r/
√
x> r1(1 − ε), r2 − r/√x> r2(1 − ε), ε > 0. Hence, the k1, k2 term of the

integrand in (D 5) is less than

eaω1r1+aω1r2Gk1 ,k2
(z, r; x)6 e−a

3r2−a2z/4e−ar1(ωk1 (1−ε)−ω1)e−ar2(ωk2 (1−ε)−ω1), (D 9)

showing that the joint z, r integrals and k1, k2 summations converge. Moreover, since
the term (k1, k2) = (1, 1) is absent from the integrand in (D 5), there is at least one of
the indices strictly greater than one. If both the indices are strictly greater than one,
we can conclude that 0 < Fb(x)6C exp(−amin(r1, r2)(ω2(1 − ε) − ω1)) tends to zero
exponentially fast as x → ∞ provided that ε < (ω2 − ω1)/ω2 with −ω2 the second
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zero of the Airy function. If one of the indices is equal to one, say k1 = 1, k2 > 1,
we have 0 < Fb(x)6C exp(−ar2(ω2(1− ε)−ω1) + aεr1) which tends exponentially to
zero as x→∞ provided that ε < (ω2 − ω1)/(1 + ω2).

Consider now the integral in (D 6) with r26 r6
√
xr2. Since the factor

exp
(−(ωk1

− ωk2
)2 (z/4a(zx+ ax4))

)
is smaller than one, the k1, k2 summations

are bounded by a product of I functions (55). Hence, for r> r2

0 < Fc(x)6 exp

(
−a

3r2
2

2

)∫ ∞
0

dv

∫ √xr2
0

dr exp

(
−a

3r2

2

)
×eaω1r1I

(
r1 +

r√
x

+
z

2ax2

)
eaω1r2I

(
r2 − r√

x
+

z

2ax2

)
. (D 10)

For I (r1 + r/
√
x + z/2ax2) we use the bound I (r1 + r/

√
x + z/2ax2)6C exp

(−aω1(r1 + r/
√
x + z/2ax2))6C exp(−aω1r1) since the argument becomes large as

x → ∞, whereas for I (r2 − r/√x + z/2ax2) we use the bound (see the discussion

leading to equation (77)) I (r2 − r/√x+ z/2ax2
)
6C

(
r2 − r/√x+ z/2ax2

)−3/2
since

the argument can become small when r approaches the upper integration limit
√
xr2.

Thus

0 < Fc(x)6C2 exp

(
−a

3r2
2

2
+ aω1r2

)∫ √xr2
0

dr exp

(
−a

3r2

2

)∫ ∞
0

dz(
r2 − r√

x
+

z

2ax2

)3/2

= C24ax5/2 exp

(
−a

3r2
2

2
+ aω1r2

)∫ r2

0

dr′
exp

(
−a

3

2
x(r′ − r2)2

)
√
r′

. (D 11)

The second line has been obtained by performing the z-integral and changing the
integration variable r to r′ = r2− r/√x. This last integral in (D 11) is finite uniformly
with respect to x so that with r2 = x/2 − ν2 the bound (D 11) tends to zero in a
Gaussian way as x → ∞. These last arguments can be reproduced to show that the
integral with −√xr16 r6 − r1 in equation (D 6) tends to zero.

Note added in proof. We thank J. Bertoin for pointing out to us that formulae (67)
and (68) for the distribution of the Burgers field can be found in Groeneboom (1989,
Corollary 3.3 and 3.4).
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